Author:
Argyros I. K.,Ezquerro J. A.,Hernández-Verón M. A.,Magreñán Á. A.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Chemistry
Reference17 articles.
1. I.K. Argyros, Remarks on the convergence of Newton’s method under Hölder continuity conditions. Tamkang J. Math. 23, 269–277 (1992)
2. I.K. Argyros, Concerning the “terra incognita” between convergence regions of two Newton methods. Nonlinear Anal. 62, 179–194 (2005)
3. I.K. Argyros, S. Hilout, On the weakening of the convergence of Newton’s method using recurrent functions. J. Complex. 25(6), 530–543 (2009)
4. I.K. Argyros, S.K. Khattri, Some development for Newton’s method under mild differentiability conditions. J. Nonlinear Anal. Optim. 5(2), 81–90 (2014)
5. F. Cianciaruso, E. De Pascale, Newton–Kantorovich aproximations when the derivative is Hölderian: old and new results. Numer. Funct. Anal. Optim. 24, 713–723 (2003)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Robust convergence of Newton's method for cone inclusion problem;A Contemporary Study of Iterative Methods;2018
2. Newton's method;A Contemporary Study of Iterative Methods;2018
3. Domain of parameters;A Contemporary Study of Iterative Methods;2018
4. The majorization method in the Kantorovich theory;A Contemporary Study of Iterative Methods;2018