Abstract
AbstractA mixed supersymmetric-algebraic approach is employed to generate the minimum uncertainty coherent states of the hyperbolic and trigonometric Rosen–Morse oscillators. The method proposed produces the superpotentials, ground state eigenfunctions and associated eigenvalues as well as the Schrödinger equation in the factorized form amenable to direct treatment in the algebraic or supersymmetric scheme. In the standard approach the superpotentials are calculated by solution of the Riccati equation for the given form of potential energy function or by differentiation of the ground state eigenfunction. The procedure applied is general and permits derivation the exact analytical solutions and coherent states for the most important model oscillators employed in molecular quantum chemistry, coherent spectroscopy (femtochemistry) and coherent nonlinear optics.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献