Numerical representations of AB-type copolymer complexes: analysis of 1H NMR chemical shift patterns in terms of a Smith–Cantor set

Author:

Colquhoun Howard M.ORCID,Grau-Crespo RicardoORCID

Abstract

AbstractWhen considering the possibility of storing information in the sequence of monomer residues within an AB-type copolymer chain, it is constructive to model that sequence as a string of ones and zeros. The intramolecular environment around any given digit (say a “1”) can then be represented by another string of integers—a code—obtained by summing pairs of digits at equivalent positions, in both directions, from that digit. The code can include only integers 0, 1 and 2, and can represent a number in any base b higher than 2. In base b = 3 the resulting set of codes includes all numbers (because only digits 0, 1 and 2 occur in ternary expansions), but in any base b > 3 the codes define a limited set of numbers comprising a fractal we term a Smith–Cantor set. The 1H NMR spectrum of a random, AB-type co(polyester-imide) shows, on complexation with pyrene, a pattern of complexation shifts approximating very closely to the Smith–Cantor set for which b = 4. Other co(polyimide) complexes show a 1H NMR pattern corresponding to a specific sub-set of this fractal. The sub-set arises from a “stop-at-zero” limitation, whereby digits in the initial string are set to zero for code-generating purposes if they occur beyond a zero, as viewed from the central “1”. The limitation arises in copolymers where pyrene binds by intercalation between pairs of adjacent diimide residues. This numerical approach provides a complete, unifying theory to account for the emergence of fractal character in the 1H NMR spectra of AB-type copolymer complexes.

Funder

UK Engineering and Physical Sciences Research Council

Sixth Framework Programme

Leverhulme Trust

University of Reading

University of Cambridge

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3