Efficient implementation of advanced Richardson Extrapolation in an atmospheric chemical scheme

Author:

Zlatev Zahari,Dimov Ivan,Faragó István,Georgiev Krassimir,Havasi ÁgnesORCID

Abstract

AbstractThe numerical treatment of an atmospheric chemical scheme, which contains 56 species, is discussed in this paper. This scheme is often used in studies of air pollution levels in different domains, as, for example, in Europe, by large-scale environmental models containing additionally two other important physical processes—transport of pollutants in the atmosphere (advection) and diffusion phenomena. We shall concentrate our attention on the efficient numerical treatment of the chemical scheme by using Implicit Runge–Kutta Methods combined with accurate and efficient advanced versions of the Richardson Extrapolation. A Variable Stepsize Variable Formula Method is developed in order to achieve high accuracy of the calculated results within a reasonable computational time. Reliable estimations of the computational errors when the proposed numerical methods are used in the treatment of the chemical scheme will be demonstrated by presenting results from several representative runs and comparing these results with “exact” concentrations obtained by applying a very small stepsize during the computations. Results related to the diurnal variations of some of the chemical species will also be presented. The approach used in this paper does not depend on the particular chemical scheme and can easily be applied when other atmospheric chemical schemes are selected.

Funder

ELTE Institutional Excellence Program

National Research, Development and Innovation Fund of Hungary

Science and Education for Smart Growth Operational Program

Eötvös Loránd University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3