Abstract
AbstractTransformative disaster resilience in times of climate change underscores the importance of reflexive governance, facilitation of socio-technical advancement, co-creation of knowledge, and innovative and bottom-up approaches. However, implementing these capacity-building processes by relying on census-based datasets and nomothetic (or top-down) approaches remains challenging for many jurisdictions. Web 2.0 knowledge sharing via online social networks, whereas, provides a unique opportunity and valuable data sources to complement existing approaches, understand dynamics within large communities of individuals, and incorporate collective intelligence into disaster resilience studies. Using Twitter data (passive crowdsourcing) and an online survey, this study draws on the wisdom of crowds and public judgment in near-real-time disaster phases when the flood disaster hit Germany in July 2021. Latent Dirichlet Allocation, an unsupervised machine learning technique for Topic Modeling, was applied to the corpora of two data sources to identify topics associated with different disaster phases. In addition to semantic (textual) analysis, spatiotemporal patterns of online disaster communication were analyzed to determine the contribution patterns associated with the affected areas. Finally, the extracted topics discussed online were compiled into five themes related to disaster resilience capacities (preventive, anticipative, absorptive, adaptive, and transformative). The near-real-time collective sensing approach reflected optimized diversity and a spectrum of people’s experiences and knowledge regarding flooding disasters and highlighted communities’ sociocultural characteristics. This bottom-up approach could be an innovative alternative to traditional participatory techniques of organizing meetings and workshops for situational analysis and timely unfolding of such events at a fraction of the cost to inform disaster resilience initiatives.
Funder
German Federal Ministry of Education and Research
Rheinische Friedrich-Wilhelms-Universität Bonn
Publisher
Springer Science and Business Media LLC
Subject
Geography, Planning and Development
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献