Stochastic virtual element methods for uncertainty propagation of stochastic linear elasticity

Author:

Zheng ZhibaoORCID,Nackenhorst Udo

Abstract

AbstractThis paper presents stochastic virtual element methods for propagating uncertainty in linear elastic stochastic problems. We first derive stochastic virtual element equations for 2D and 3D linear elastic problems that may involve uncertainties in material properties, external forces, boundary conditions, etc. A stochastic virtual element space that couples the deterministic virtual element space and the stochastic space is constructed for this purpose and used to approximate the unknown stochastic solution. Two numerical frameworks are then developed to solve the derived stochastic virtual element equations, including a Polynomial Chaos approximation based approach and a weakly intrusive approximation based approach. In the Polynomial Chaos based framework, the stochastic solution is approximated using the Polynomial Chaos basis and solved via an augmented deterministic virtual element equation that is generated by applying the stochastic Galerkin procedure to the original stochastic virtual element equation. In the weakly intrusive approximation based framework, the stochastic solution is approximated by a summation of a set of products of random variables and deterministic vectors, where the deterministic vectors are solved via converting the original stochastic problem to deterministic virtual element equations by the stochastic Galerkin approach, and the random variables are solved via converting the original stochastic problem to one-dimensional stochastic algebraic equations by the classical Galerkin procedure. This method avoids the curse of dimensionality in high-dimensional stochastic problems successfully since all random inputs are embedded into one-dimensional stochastic algebraic equations whose computational effort weakly depends on the stochastic dimension. Numerical results on 2D and 3D problems with low- and high-dimensional random inputs demonstrate the good performance of the proposed methods.

Funder

Deutsche Forschungsgemeinschaft

Alexander von Humboldt-Stiftung

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3