Author:
Pan Shaoyuan,Yamaguchi Yuya,Suppasri Anawat,Moriguchi Shuji,Terada Kenjiro
Abstract
AbstractThe present study proposes an MPM (material point method)–FEM (finite element method) hybrid analysis method for simulating granular mass–water interaction problems, in which the granular mass causes dynamic motion of the surrounding water. While the MPM is applied to the solid (soil) phase whose motion is suitably represented by Lagrangian description, the FEM is applied to the fluid (water) phase that is adapted for Eulerian description. Also, the phase-field approach is employed to capture the free surface. After the accuracy of the proposed method is tested by comparing the results to some analytical solutions of the consolidation theory, several numerical examples are presented to demonstrate its capability in simulating fluid motions induced by granular mass movements.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献