Computational analysis of particle-laden-airflow erosion and experimental verification

Author:

Castorrini Alessio,Venturini Paolo,Corsini Alessandro,Rispoli Franco,Takizawa Kenji,Tezduyar Tayfun E.

Abstract

AbstractComputational analysis of particle-laden-airflow erosion can help engineers have a better understanding of the erosion process, maintenance and protection of turbomachinery components. We present an integrated method for this class of computational analysis. The main components of the method are the residual-based Variational Multiscale (VMS) method, a finite element particle-cloud tracking (PCT) method with ellipsoidal clouds, an erosion model based on two time scales, and the Solid-Extension Mesh Moving Technique (SEMMT). The turbulent-flow nature of the analysis is addressed with the VMS, the particle-cloud trajectories are calculated based on the time-averaged computed flow field and closure models defined for the turbulent dispersion of particles, and one-way dependence is assumed between the flow and particle dynamics. Because the target-geometry update due to the erosion has a very long time scale compared to the fluid–particle dynamics, the update takes place in a sequence of “evolution steps” representing the impact of the erosion. A scale-up factor, calculated based on the update threshold criterion, relates the erosions and particle counts in the evolution steps to those in the PCT computation. As the target geometry evolves, the mesh is updated with the SEMMT. We present a computation designed to match the sand-erosion experiment we conducted with an aluminum-alloy target. We show that, despite the problem complexities and model assumptions involved, we have a reasonably good agreement between the computed and experimental data.

Funder

University of Lancaster

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3