Author:
Schröder Jörg,Reichel Maximilian,Birk Carolin
Abstract
AbstractIn this contribution we propose an efficient and simple finite-element procedure for the approximation of open boundary problems for applications in magnetostatics. In these problems, the interaction of the solid with external space plays a crucial role because of the magnetic stray fields that arise. For this purpose, the infinite region under consideration is approximated by a sufficiently large domain. This region is then divided into a so-called interior domain and an exterior domain. As an essential prerequisite, we assume linear behavior of the (large) exterior domain. The latter is then reduced to the degrees of freedom of the connecting line (2D)/connecting surface (3D) of both domains via static condensation. The proposed finite element scheme can be seen as an alternative to established methods for infinite domains. These methods often require semi-analytical solutions to describe the behavior in the exterior domain, which can be difficult to obtain if heterogeneous structures are present. The proposed finite element procedure is not subject to any restrictions with regard to the topology of the exterior space. After a general introduction of the numerical scheme, we apply the method to problems of magnetostatics with nonlinear behavior in the interior domain.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献