Homogenization assumptions for the two-scale analysis of first-order shear deformable shells

Author:

Mester LeonieORCID,Klarmann SimonORCID,Klinkel SvenORCID

Abstract

AbstractThis contribution presents a multiscale approach for the analysis of shell structures using Reissner–Mindlin kinematics. A distinctive feature is that the thickness of the representative volume element (RVE) corresponds to the shell thickness. The main focus of this paper is on the choice of correct boundary conditions for the RVE. Three different types of boundary conditions, which fulfil the Hill–Mandel condition, are presented to bridge the two scales. A common feature is the application of zero-traction boundary conditions at the top and bottom surfaces of the RVE. Furthermore, an internal constraint is used to reduce the dependency of the stiffness components on the RVE size. The introduced boundary conditions differ mainly in the application of shear strains and their symmetry requirements on the RVE. The characteristic features are compared by means of linear-elastic benchmark tests. It is shown that the stress resultants and tangent stiffness components are obtained correctly. Moreover, the presented approach is verified using different macroscopic shell structures and different mesostructures. Both, linear and nonlinear small strain examples are compared to analytical values or full-scale solutions and demonstrate a wide applicability of the present formulation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3