Physics-informed machine-learning model of temperature evolution under solid phase processes

Author:

King Ethan,Li Yulan,Hu Shenyang,Machorro Eric

Abstract

AbstractWe model temperature dynamics during Shear Assisted Proccess Extrusion (ShAPE), a solid phase process that plasticizes feedstock with a rotating tool and subsequently extrudes it into a consolidated tube, rod, or wire. Control of temperature is critical during ShAPE processing to avoid liquefaction, ensure smooth extrusion, and develop desired material properties in the extruded products. Accurate modeling of the complicated thermo-mechanical feedbacks between process inputs, material temperature, and heat generation presents a significant barrier to predictive modeling and process design. In particular, connecting micro-structural scale mechanisms of heat generation to macro-scale predictions of temperature can become computationally intractable. In this work we use a neural network (NN) model of heat generation to bridge this gap, by combining it with a simplified model of the temperature dynamics due to conduction and convection to capture the macro scale evolution of temperature. We inform the construction of the NN heat generation model using crystal plasticity simulations at the micro-structural scale to model the effects of process inputs on generation of heat. We achieved close fits of the temperature dynamics model to a diverse experimental data-set. Further, the relationships learned by the NN model between process inputs and heat generation showed qualitative agreement with those predicted by crystal plasticity simulations.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3