Simulation of fracture in vascular tissue: coupling a continuum damage formulation with an embedded representation of fracture

Author:

Miller Christopher,Gasser T. Christian

Abstract

AbstractThe fracture of vascular tissue, and load-bearing soft tissue in general, is relevant to various biomechanical and clinical applications, from the study of traumatic injury and disease to the design of medical devices and the optimisation of patient treatment outcomes. The fundamental mechanisms associated with the inception and development of damage, leading to tissue failure, have yet to be wholly understood. We present the novel coupling of a microstructurally motivated continuum damage model that incorporates the time-dependent interfibrillar failure of the collagenous matrix with an embedded phenomenological representation of the fracture surface. Tissue separation is therefore accounted for through the integration of the cohesive crack concept within the partition of unity finite element method. A transversely isotropic cohesive potential per unit undeformed area is introduced that comprises a rate-dependent evolution of damage and accounts for mixed-mode failure. Importantly, a novel crack initialisation procedure is detailed that identifies the occurrence of localised deformation in the continuum material and the orientation of the inserted discontinuity. Proof of principle is demonstrated by the application of the computational framework to two representative numerical simulations, illustrating the robustness and versatility of the formulation.

Funder

Vetenskapsrådet

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3