Abstract
AbstractIn this manuscript, a robust and variationally consistent technique is proposed for local treatment of the phase-field fracture irreversibility. This technique involves an extension of the phase-field fracture energy functional through a micromorphic approach. Consequently, the phase-field is transformed into a local variable, while a micromorphic variable regularizes the problem. The local nature of the phase-field variable enables an easier implementation of its irreversibility using a pointwise ‘max’ with system level precision. Unlike the popular history variable approach, which also enforces local fracture irreversibility, the micromorphic approach yields a variationally consistent framework. The efficacy of the micromorphic approach in phase-field fracture modelling is demonstrated in this work with numerical experiments on benchmark brittle and quasi-brittle fracture problems in linear elastic media. Furthermore, the extensibility of the micromorphic phase-field fracture model towards multiphysics problems is demonstrated. To that end, a theoretical extension is carried out for modelling hydraulic fracture, and relevant numerical experiments exhibiting crack merging are presented. The source code as well as the data set accompanying this work would be made available on GitHub (https://github.com/ritukeshbharali/falcon).
Funder
Svenska Forskningsrådet Formas
Vetenskapsrådet
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献