A comparative analysis of continuum plasticity, viscoplasticity and phase-field models for earthquake sequence modeling

Author:

Goudarzi M.ORCID,Gerya T.,Dinther Y. vanORCID

Abstract

AbstractThis paper discusses continuum models for simulating earthquake sequences on faults governed by rate-and-state dependent friction. Through detailed numerical analysis of a conventional strike-slip fault, new observations regarding the use of various continuum earthquake models are presented. We update a recently proposed plasticity-based model using a consistently linearized formulation, show its agreement with discrete fault models for fault thicknesses of hundreds of meters, and demonstrate mesh objectivity for slip-related variables. To obtain a fully regularized fault width description with an internal length scale, we study the performance and mesh convergence of a plasticity-based model complemented by a Kelvin viscosity term and the phase-field approach to cohesive fracture. The Kelvin viscoplasticity-based model can introduce an internal length scale and a mesh-objective response. However, on grid sizes down to meters, this only holds for very high Kelvin viscosities that inhibit seismic slip rates, which renders this approach impractical for simulating earthquake sequences. On the other hand, our phase-field implementation for earthquake sequences provides a numerically robust framework that agrees with a discrete reference solution, is mesh objective, and reaches seismic slip rates. The model, unsurprisingly, requires highly refined grids around the fault zones to reproduce results close to a discrete model. Following this line, the effect of an internal length scale parameter on the phase-field predictions and mesh convergence are discussed.

Funder

The Dutch Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3