Improved hyper-reduction approach for the forced vibration analysis of rotating components

Author:

Kang Seung-Hoon,Kim Yongse,Cho Haeseong,Shin SangJoon

Abstract

AbstractForced vibration analysis is an indispensable process for the design of a rotating component. However, rather expensive nonlinear static and linear frequency response analyses are usually accompanied by a frequency domain analysis. The traditional mode-superposition method (MSM) effectively reduces the cost of the frequency response analysis. However, the nonlinear static analysis of earlier processes remains as the computational bottleneck. In this paper, the application of the hyper-reduction method will be proposed along with the model order reduction (MOR) framework for rotating component forced vibration analysis. The energy-conserving sampling and weighting (ECSW) method will be employed for the nonlinear iterative computation. The pre-stressed stiffness matrix of the reduced finite elements (FEs) resulting from the ECSW will be used for the post computation stage. Also, a variety of MOR will be attempted for the performance comparison, including MSM, proper orthogonal decomposition (POD)-based reduced order model (ROM), and a hybrid approach. It is found that the present ECSW-combined MOR will significantly relieve the computational bottleneck, provide a minimal loss of accuracy, and be compatible with both nonlinear and linear analyses of the rotating component forced vibration analysis.

Funder

Agency for Defense Development

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3