A mixed-order quasicontinuum approach for beam-based architected materials with application to fracture

Author:

Kraschewski KevinORCID,Phlipot Gregory P.,Kochmann Dennis M.ORCID

Abstract

AbstractPredicting the mechanics of large structural networks, such as beam-based architected materials, requires a multiscale computational strategy that preserves information about the discrete structure while being applicable to large assemblies of struts. Especially the fracture properties of such beam lattices necessitate a two-scale modeling strategy, since the fracture toughness depends on discrete beam failure events, while the application of remote loads requires large simulation domains. As classical homogenization techniques fail in the absence of a separation of scales at the crack tip, we present a concurrent multiscale technique: a fully-nonlocal quasicontinuum (QC) multi-lattice formulation for beam networks, based on a conforming mesh. Like the original atomistic QC formulation, we maintain discrete resolution where needed (such as around a crack tip) while efficiently coarse-graining in the remaining simulation domain. A key challenge is a suitable model in the coarse-grained domain, where classical QC uses affine interpolations. This formulation fails in bending-dominated lattices, as it overconstrains the lattice by preventing bending without stretching of beams. Therefore, we here present a beam QC formulation based on mixed-order interpolation in the coarse-grained region—combining the efficiency of linear interpolation where possible with the accuracy advantages of quadratic interpolation where needed. This results in a powerful computational framework, which, as we demonstrate through our validation and benchmark examples, overcomes the deficiencies of previous QC formulations and enables, e.g., the prediction of the fracture toughness and the diverse nature of stress distributions of stretching- and bending-dominated beam lattices in two and three dimensions.

Funder

H2020 European Research Council

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3