Parameter identification for phase-field modeling of fracture: a Bayesian approach with sampling-free update

Author:

Wu T.,Rosić B.,De Lorenzis L.,Matthies H. G.

Abstract

AbstractPhase-field modeling of fracture has gained popularity within the last decade due to the flexibility of the related computational framework in simulating three-dimensional arbitrarily complicated fracture processes. However, the numerical predictions are greatly affected by the presence of uncertainties in the mechanical properties of the material originating from unresolved heterogeneities and the use of noisy experimental data. The objective of this work is to apply the Bayesian approach to estimate bulk and shear moduli, tensile strength and fracture toughness of the phase-field model, thus improving accuracy of the simulations with the help of experimental data. Conventional approaches for estimating the Bayesian posterior probability density function adopt sampling schemes, which often require a large amount of model estimations to achieve the desired convergence, thus resulting in a high computational cost. In order to alleviate this problem, we employ a more efficient approach called sampling-free linear Bayesian update, which relies on the evaluation of the conditional expectation of parameters given experimental data. We identify the mechanical properties of cement mortar byconditioningon the experimental data of the three-point bending test (observations) in an online and offline manner. In the online approach the parameter values are sequentially updated on the fly as the new experimental information comes in. In contrast, the offline approach is used only when the whole history of experimental data is provided once the experiment is performed. Both versions of estimation are discussed and compared by validating the phase-field fracture model on an unused set of experimental data.

Funder

Technische Universität Braunschweig

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3