A multiphase-field approach to small strain crystal plasticity accounting for balance equations on singular surfaces

Author:

Prahs AndreasORCID,Schöller Lukas,Schwab Felix K.,Schneider Daniel,Böhlke Thomas,Nestler Britta

Abstract

AbstractAn implementation of the crystal plasticity theory in the context of the multiphase-field method provides a numerically efficient tracking of evolving grain boundaries, modeled as diffuse interfaces. In literature, several approaches exist for the implementation of the plastic material behavior within the diffuse interface, based on interpolation, homogenization, or the mechanical jump conditions. Among these, only the jump condition approach exhibits an intrinsic relationship to the sharp interface (SI) theory. Therefore, in the work at hand, the implementation of the crystal plasticity theory within the jump condition approach, referred to as phase-specific plastic fields approach (PSPFA), is discussed in detail. The PSPFA is compared to the interpolation approach, referred to as common plastic fields approach (CPFA), using three-dimensional benchmark simulations of a bicrystal set-up. The comparison reveals that the PSPFA and SI coincide convincingly regarding the accumulated plastic slip and the Mises stress. In contrast, a significant deviation of CPFA and SI is observed both quantitatively and qualitatively, not only within the diffuse interface region, but throughout the complete simulation domain. A variation of the interface width illustrates that this observation can be transferred to the normal components of the total strain, even for smaller interface widths. Consequently, a quantitative estimate of the plastic material behavior, which is crucial for the prediction of the dynamic behavior of grain boundaries, is only provided by the PSPFA. The application of the crystal plasticity in the context of PSPFA to more complex microstructures is illustrated with respect to a periodic honeycomb-structure and an octotuple.

Funder

Karlsruhe Institute of Technology

Helmholtz-Gemeinschaft

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3