Abstract
AbstractAn isogeometric approach for solving the Laplace–Beltrami equation on a two-dimensional manifold embedded in three-dimensional space using a Galerkin method based on Catmull–Clark subdivision surfaces is presented and assessed. The scalar-valued Laplace–Beltrami equation requires only $$C^0$$
C
0
continuity and is adopted to elucidate key features and properties of the isogeometric method using Catmull–Clark subdivision surfaces. Catmull–Clark subdivision bases are used to discretise both the geometry and the physical field. A fitting method generates control meshes to approximate any given geometry with Catmull–Clark subdivision surfaces. The performance of the Catmull–Clark subdivision method is compared to the conventional finite element method. Subdivision surfaces without extraordinary vertices show the optimal convergence rate. However, extraordinary vertices introduce error, which decreases the convergence rate. A comparative study shows the effect of the number and valences of the extraordinary vertices on accuracy and convergence. An adaptive quadrature scheme is shown to reduce the error.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献