Numerical experiment based on non-linear micropolar finite element to study micro-rotations generated by the non-symmetric Maxwell stress tensor

Author:

Palma Roberto,Pérez-Aparicio José L.,Taylor Robert L.

Abstract

AbstractThe main aim of the present work is to investigate the role of the Maxwell stress tensor in the study of active materials. Despite the importance of this tensor in modeling mechatronic devices used in sophisticated applications, its non–symmetry still generates controversies in the literature, probably because classical continuum mechanics assumes a symmetric Cauchy stress, although the sum of Cauchy and Maxwell stresses is non–symmetric. In the framework of generalised continuum mechanics–a more advanced formalism than the classical one–, each material point has an associated microstructure so that the micro–rotations of the electric/magnetic dipoles present in real active materials may be simulated. To this end, a modified total stress formulation, including an angular momentum balance, is developed and implemented into a finite element research code using a complex–step formulation. It is concluded that generalised mechanics allows for incorporating both symmetric and non–symmetric contributions of the Maxwell tensor. Consequently, the rotations generated by the electromagnetic field may be analysed. The influence of the complete Maxwell tensor in a magnetostrictive actuator is studied by several magneto–mechanical numerical experiments of a Terfenol–D rod encircled by air, and several conclusions are highlighted.

Funder

Universidad de Granada

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3