Boolean finite cell method for multi-material problems including local enrichment of the Ansatz space

Author:

Petö MártonORCID,Eisenträger Sascha,Duvigneau Fabian,Juhre Daniel

Abstract

AbstractThe Finite Cell Method (FCM) allows for an efficient and accurate simulation of complex geometries by utilizing an unfitted discretization based on rectangular elements equipped with higher-order shape functions. Since the mesh is not aligned to the geometric features, cut elements arise that are intersected by domain boundaries or internal material interfaces. Hence, for an accurate simulation of multi-material problems, several challenges have to be solved to handle cut elements. On the one hand, special integration schemes have to be used for computing the discontinuous integrands and on the other hand, the weak discontinuity of the displacement field along the material interfaces has to be captured accurately. While for the first issue, a space-tree decomposition is often employed, the latter issue can be solved by utilizing a local enrichment approach, adopted from the extended finite element method. In our contribution, a novel integration scheme for multi-material problems is introduced that, based on the B-FCM formulation for porous media, originally proposed by Abedian and Düster (Comput Mech 59(5):877–886, 2017), extends the standard space-tree decomposition by Boolean operations yielding a significantly reduced computational effort. The proposed multi-material B-FCM approach is combined with the local enrichment technique and tested for several problems involving material interfaces in 2D and 3D. The results show that the number of integration points and the computational time can be reduced by a significant amount, while maintaining the same accuracy as the standard FCM.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3