Modeling Hybrid Feature-Based Phishing Websites Detection Using Machine Learning Techniques

Author:

Das Guptta Sumitra,Shahriar Khandaker Tayef,Alqahtani Hamed,Alsalman Dheyaaldin,Sarker Iqbal H.ORCID

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Statistics, Probability and Uncertainty,Computer Science Applications,Business, Management and Accounting (miscellaneous)

Reference42 articles.

1. Sarker IH, Furhad MH, Nowrozy R (2021) Ai-driven cybersecurity: an overview, security intelligence modeling and research directions. SN Comput Sci 2(3):1–18

2. Digital 2021: The latest insights into the ‘state of digital’. https://wearesocial.com/blog/2021/01/digital-2021-the-latest-insights-into-the-state-of-digital. Accessed 5 July 2021

3. Rao RS, Pais AR (2019) Detection of phishing websites using an efficient feature-based machine learning framework. Neural Comput Appl 31(8):3851–3873

4. Jain AK, Gupta BB (2019) A machine learning based approach for phishing detection using hyperlinks information. J Ambient Intell Human Comput 10(5):2015–2028

5. Şahingöz ÖK, Buber E, Demir Ö, Diri B (2017) Machine learning based phishing detection from uris

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SENTINEY: Securing ENcrypted mulTI-party computatIoN for Enhanced data privacY and phishing detection;Expert Systems with Applications;2024-12

2. Novel interpretable and robust web-based AI platform for phishing email detection;Computers and Electrical Engineering;2024-12

3. ENHANCING BANK CUSTOMER PROTECTION AGAINST PHISHING ATTACKS THROUGH XGBOOST-BASED FEATURE ANALYSIS;Transmisi: Jurnal Ilmiah Teknik Elektro;2024-07-31

4. Exploring the Efficacy of Federated-Continual Learning Nodes with Attention-Based Classifier for Robust Web Phishing Detection: An Empirical Investigation;2024 International Conference on Advancements in Power, Communication and Intelligent Systems (APCI);2024-06-21

5. Phishing Websites Classification using Extreme Learning Machine;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3