Application of the innovations technique to distributed-parameter detection and estimation problems
Author:
Tzafestas Spyros G.
Publisher
Springer-Verlag
Reference50 articles.
1. T. KAILATH, “An innovations approach to least-squares estimation Part I: Linear filtering in additive white noise”, IEEE Trans. Auto. Contr., Vol. AC-13, pp. 646–655, 1968.
2. T. KAILATH and P. FROST, “An innovations approach to least squares estimation — Part II: Linear smoothing in additive white noise”, IEEE Trans. Auto. Contr., Vol. AC-13, pp. 655–660, 1968.
3. P. FROST and T. KAILATH, “An innovations approach to least squares estimation — Part III: Nonlinear estimation in white Gaussian noise”, IEEE Trans.Auto.Contr., Vol. AC-16, pp. 217–226, 1971.
4. T. KAILATH and R. GEESEY, “An innovations approach to least squares estimation — Part IV: Recursive estimation given the covariance function”, IEEE Trans.Auto.Contr., Vol. AC-16, pp. 720–727, 1971.
5. T. KAILATH, “A general likelihood-ratio formula for random signals in Gaussian noise”, IEEE Trans. Inform. Theory, Vol. IT-15, pp. 350–361, 1969.