A technical feasibility study on adaptation of a microsurgical robotic system to an intraoperative complication management in dental implantology: perforated Schneiderian membrane repair using Symani® Surgical System

Author:

Wieker Henning,Hinrichs Cedric,Retzlaff Merle,Spille Johannes Heinrich,Laudien Martin,Acil Yahya,Wiltfang Jörg,Gülses Aydin

Abstract

AbstractThe aim of the current study was to test the technical and clinical feasibility of a robotic system and investigate its potential in the surgical repair of perforated Schneiderian membranes using an ex-vivo porcine model. Eight pig heads were operated conventionally via a surgical loop and eight pig heads with the surgical robot “Symani® Surgical System” (Medical Microinstruments, Inc., Pisa, Italy). On each specimen, the Schneiderian membrane was incised over a length of 0.7 mm resembling a perforation. Operation time, the maximum sinusoidal pressure, the course of the pressure and the filling volume were measured. Additionally, adaptation of the wound edges has been detected via scanning electron microscopy. There were no significant differences for the pressure maximum (p = 0.528), for the time until the pressure maximum was reached (p = 0.528), or for the maximum filling volume (p = 0.674). The time needed for the suturing of the membrane via robotic surgery was significantly longer (p < 0.001). However, the scanning electron microscope revealed a better adaptation of the wound edges with robotic surgery. The technical feasibility of robot-assisted suturing of Schneiderian membrane laceration using the robotic system has been confirmed for the first time. No differences considering the pressure resistance compared to the conventional repair could be observed, but advantages in wound adaptation could be found with an electron microscope. Regarding the material and training costs and limited indications spectrum, robotic surgery systems still might not present financially feasible options in the daily dental practice yet.

Funder

Universitätsklinikum Schleswig-Holstein - Campus Kiel

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3