Bloom Filter Encryption and Applications to Efficient Forward-Secret 0-RTT Key Exchange
-
Published:2021-03-09
Issue:2
Volume:34
Page:
-
ISSN:0933-2790
-
Container-title:Journal of Cryptology
-
language:en
-
Short-container-title:J Cryptol
Author:
Derler David,Gellert Kai,Jager Tibor,Slamanig Daniel,Striecks Christoph
Abstract
AbstractForward secrecy is considered an essential design goal of modern key establishment (KE) protocols, such as TLS 1.3, for example. Furthermore, efficiency considerations such as zero round-trip time (0-RTT), where a client is able to send cryptographically protected payload data along with the very first KE message, are motivated by the practical demand for secure low-latency communication. For a long time, it was unclear whether protocols that simultaneously achieve 0-RTT and full forward secrecy exist. Only recently, the first forward-secret 0-RTT protocol was described by Günther et al. (Eurocrypt, 2017). It is based on puncturable encryption. Forward secrecy is achieved by “puncturing” the secret key after each decryption operation, such that a given ciphertext can only be decrypted once (cf. also Green and Miers, S&P 2015). Unfortunately, their scheme is completely impractical, since one puncturing operation takes between 30 s and several minutes for reasonable security and deployment parameters, such that this solution is only a first feasibility result, but not efficient enough to be deployed in practice. In this paper, we introduce a new primitive that we term Bloom filter encryption (BFE), which is derived from the probabilistic Bloom filter data structure. We describe different constructions of BFE schemes and show how these yield new puncturable encryption mechanisms with extremely efficient puncturing. Most importantly, a puncturing operation only involves a small number of very efficient computations, plus the deletion of certain parts of the secret key, which outperforms previous constructions by orders of magnitude. This gives rise to the first forward-secret 0-RTT protocols that are efficient enough to be deployed in practice. We believe that BFE will find applications beyond forward-secret 0-RTT protocols.
Funder
Bergische Universität Wuppertal
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Software
Reference49 articles.
1. S. Agrawal, D. Boneh, X. Boyen, Efficient lattice (H)IBE in the standard model, in: H. Gilbert (ed.) EUROCRYPT 2010. LNCS, vol. 6110 (Springer, Heidelberg, Germany, French Riviera, May 30–June 3, 2010), pp. 553–572 2. N. Attrapadung, G. Hanaoka, S. Yamada, Conversions among several classes of predicate encryption and applications to ABE with various compactness tradeoffs, in T. Iwata, J.H. Cheon (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452 (Springer, Heidelberg, Germany, Auckland, New Zealand, Nov 30–Dec 3, 2015), pp. 575–601 3. N. Aviram, K. Gellert, T. Jager, Session resumption protocols and efficient forward security for TLS 1.3 0-RTT, in Y. Ishai, V. Rijmen (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477 (Springer, Heidelberg, Germany, Darmstadt, Germany, May 19–23, 2019), pp. 117–150 4. R. Barbulescu, S. Duquesne, Updating key size estimations for pairings. Journal of Cryptology 32(4), 1298–1336 (2019) 5. P.S.L.M. Barreto, B. Lynn, M. Scott, Constructing elliptic curves with prescribed embedding degrees, in S. Cimato, C. Galdi, G. Persiano (eds.) SCN 02. LNCS, vol. 2576 (Springer, Heidelberg, Germany, Amalfi, Italy, Sep 12–13, 2003), pp. 257–267
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|