Everlasting UC Commitments from Fully Malicious PUFs

Author:

Magri Bernardo,Malavolta Giulio,Schröder Dominique,Unruh Dominique

Abstract

AbstractEverlasting security models the setting where hardness assumptions hold during the execution of a protocol but may get broken in the future. Due to the strength of this adversarial model, achieving any meaningful security guarantees for composable protocols is impossible without relying on hardware assumptions (Müller-Quade and Unruh, JoC’10). For this reason, a rich line of research has tried to leverage physical assumptions to construct well-known everlasting cryptographic primitives, such as commitment schemes. The only known everlastingly UC secure commitment scheme, due to Müller-Quade and Unruh (JoC’10), assumes honestly generated hardware tokens. The authors leave the possibility of constructing everlastingly UC secure commitments from malicious hardware tokens as an open problem. Goyal et al. (Crypto’10) constructs unconditionally UC-secure commitments and secure computation from malicious hardware tokens, with the caveat that the honest tokens must encapsulate other tokens. This extra restriction rules out interesting classes of hardware tokens, such as physically uncloneable functions (PUFs). In this work, we present the first construction of an everlastingly UC-secure commitment scheme in the fully malicious token model without requiring honest token encapsulation. Our scheme assumes the existence of PUFs and is secure in the common reference string model. We also show that our results are tight by giving an impossibility proof for everlasting UC-secure computation from non-erasable tokens (such as PUFs), even with trusted setup.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3