A practical application of game theory to optimize selection of hardware Trojan detection strategies

Author:

Graf JonathanORCID,Batchelor Whitney,Harper Scott,Marlow Ryan,Carlisle Edward,Athanas Peter

Abstract

AbstractA wide variety of Hardware Trojan countermeasures have been developed, but less work has been done to determine which are optimal for any given design. To address this, we consider not only metrics related to the performance of the countermeasure, but also the likely action of an adversary given their goals. Trojans are inserted by an adversary to accomplish an end, so these goals must be considered and quantified in order to predict these actions. The model presented here builds upon a security economic approach that models the adversary and defender motives and goals in the context of empirically derived countermeasure efficacy metrics. The approach supports formation of a two-player strategic game to determine optimal strategy selection for both adversary and defender. A game may be played in a variety of contexts, including consideration of the entire design lifecycle or only a step in product development. As a demonstration of the practicality of this approach, we present an experiment that derives efficacy metrics from a set of countermeasures (defender strategies) when tested against a taxonomy of Trojans (adversary strategies). We further present a software framework, GameRunner, that automates not only the solution to the game but also mathematical and graphical exploration of “what if” scenarios in the context of the game. GameRunner can also issue “prescriptions,” a set of commands that allows the defender to automate the application of the optimal defender strategy to their circuit of concern. Finally, we include a discussion of ongoing work to include additional software tools, a more advanced experimental framework, and the application of irrationality models to account for players who make subrational decisions.

Funder

U.S. Air Force

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hardware Trojan Testing with Hierarchical Trojan Types Under Cognitive Biases;2024 58th Annual Conference on Information Sciences and Systems (CISS);2024-03-13

2. Risk Management in the Design of Computer Network Topology;Lecture Notes in Computer Science;2024

3. A review of the security vulnerabilities and countermeasures in the Internet of Things solutions: A bright future for the Blockchain;Internet of Things;2023-10

4. Game and Prospect Theoretic Hardware Trojan Testing;2023 57th Annual Conference on Information Sciences and Systems (CISS);2023-03-22

5. On metrics and prioritization of investments in hardware security;Systems Engineering;2023-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3