Formal verification and validation of run-to-completion style state charts using Event-B

Author:

Morris K.ORCID,Snook C.,Hoang T. S.,Hulette G.,Armstrong R.,Butler M.

Abstract

AbstractState chart notations with ‘run to completion’ semantics are popular with engineers for designing controllers that react to environment events with a sequence of state transitions but lack formal refinement and rigorous verification methods. State chart models are typically used to design complex control systems that respond to environmental triggers with a sequential process. The model is usually constructed at a concrete level and verified and validated using animation techniques relying on human judgement. Event-B, on the other hand, is based on refinement from an initial abstraction and is designed to make formal verification by automatic theorem provers feasible. Abstraction and formal verification provide greater assurance that critical (e.g. safety or security) properties are not violated by the control system. In this paper, we introduce a notion of refinement into a ‘run to completion’ state chart modelling notation and leverage Event-B’s tool support for theorem proving. We describe the difficulties in translating ‘run to completion’ semantics into Event-B refinements and suggest a solution. We illustrate our approach and show how models can be validated at different refinement levels using our scenario checker animation tools. We show how critical invariant properties can be verified by proof despite the reactive nature of the system and how behavioural aspects of the system can be verified by testing the expected reactions using a temporal logic, model checking approach. To verify liveness, we outline a proof that the run to completion is deadlock-free and converges to complete the run.

Publisher

Springer Science and Business Media LLC

Subject

Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A logic-based event controller for means-end reasoning in simulation environments;SIMULATION;2023-03-24

2. Formal Language Semantics for Triggered Enable Statecharts with a Run-to-Completion Scheduling;Theoretical Aspects of Computing – ICTAC 2023;2023

3. Developing the UML-B Modelling Tools;Software Engineering and Formal Methods. SEFM 2022 Collocated Workshops;2023

4. Safety SysML: An Executable Safety-Critical Avionics Requirement Modeling Language;2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS);2022-12

5. Advances in modeling, verification and testing of safety-critical software architectures;Innovations in Systems and Software Engineering;2022-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3