1. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: VLDB. pp. 81–92 (2003). http://www.vldb.org/conf/2003/papers/S04P02.pdf
2. Anagnostopoulos, A., Vlachos, M., Hadjieleftheriou, M., Keogh, E.J., Yu, P.S.: Global distance-based segmentation of trajectories. In: Eliassi-Rad, T., Ungar, L.H., Craven, M., Gunopulos, D. (eds.) Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, August 20–23. pp. 34–43. ACM, New York (2006). http://doi.acm.org/10.1145/1150402.1150411
3. Andersson, M., Gudmundsson, J., Laube, P., Wolle, T.: Reporting leaders and followers among trajectories of moving point objects. GeoInformatica 12(4), 497–528 (2008). http://dx.doi.org/10.1007/s10707-007-0037-9
4. Andrienko, G.L., Andrienko, N.V., Bak, P., Keim, D.A., Kisilevich, S., Wrobel, S.: A conceptual framework and taxonomy of techniques for analyzing movement. J. Vis. Lang. Comput. 22(3), 213–232 (2011). http://dx.doi.org/10.1016/j.jvlc.2011.02.003
5. Ankerst, M., Breunig, M.M., Kriegel, H., Sander, J.: OPTICS: ordering points to identify the clustering structure. In: Delis, A., Faloutsos, C., Ghandeharizadeh, S. (eds.) SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of Data, June 1–3, 1999, Philadelphia, Pennsylvania, USA. pp. 49–60. ACM Press, New York (1999). http://doi.acm.org/10.1145/304182.304187