Computational Support of Medicinal Chemistry in Industrial Settings
Author:
Ortwine Daniel F.
Publisher
Springer New York
Reference10 articles.
1. Abel R, Mondal S, Masse C, Greenwood J, Harriman G, Ashwell MA, Bhat S, Wester R, Frye L, Kapeller R, Friesner RA (2017) Accelerating drug discovery through tight integration of expert molecular design and predictive scoring. Curr Opin Struct Biol 43:38–44. https://doi.org/10.1016/j.sbi.2016.10.007 2. Kuhn B, Tichý M, Wang L, Robinson S, Martin RE, Kuglstatter A, Benz J, Giroud M, Schirmeister T, Abel R, Diederich F, Hert J (2017) Prospective evaluation of free energy calculations for the prioritization of Cathepsin L inhibitors. J Med Chem 60:2485–2497. https://doi.org/10.1021/acs.jmedchem.6b01881 3. Gawehn E, Hiss JA, Schneider G (2016) Deep learning in drug discovery. Mol Inform 35:3–14. https://doi.org/10.1002/minf.201501008 4. Lee M-L, Aliagas I, Dotson J, a Feng J, Gobbi A, Heffron T (2012) DEGAS: sharing and tracking target compound ideas with external collaborators. J Chem Inf Model 52:278–284. https://doi.org/10.1021/ci2003297 5. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9:203–214. https://doi.org/10.1038/nrd3078
|
|