1. C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto, and G. Scheffer. Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses [Panoramas and Syntheses]. Société Mathématique de France, Paris, 2000. With a preface by Dominique Bakry and Michel Ledoux.
2. R. Adamczak, D. Chafaï, and P. Wolff. Circular law for random matrices with exchangeable entries. ArXiv e-prints, February 2014.
3. R. Adamczak. Logarithmic Sobolev inequalities and concentration of measure for convex functions and polynomial chaoses. Bull. Pol. Acad. Sci. Math., 53(2):221–238, 2005.
4. R. Adamczak. A tail inequality for suprema of unbounded empirical processes with applications to Markov chains. Electron. J. Probab., 13:no. 34, 1000–1034, 2008.
5. L. Ambrosio, N. Gigli, and G. Savaré. Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J., 163(7):1405–1490, 2014.