Multi-objective aerodynamic optimization of high-speed train heads based on the PDE parametric modeling

Author:

Wang Shuangbu,Wang Ruibin,Xia YuORCID,Sun Zhenye,You Lihua,Zhang Jianjun

Abstract

AbstractWith the increasing running speed, the aerodynamic issues of high-speed trains are being raised and impact the running stability and energy efficiency. The optimization design of the head shape is significantly important in improving the aerodynamic performance of high-speed trains. Existing aerodynamic optimization methods are limited by the parametric modeling methods of train heads which are unable to accurately and completely parameterize both global shapes and local details. Due to this reason, they cannot optimize both global and local shapes of train heads. In order to tackle this problem, we propose a novel multi-objective aerodynamic optimization method of high-speed train heads based on the partial differential equation (PDE) parametric modeling. With this method, the half of a train head is parameterized with 17 PDE surface patches which describe global shapes and local details and keep the surface smooth. We take the aerodynamic drag and lift as optimization objectives; divide the optimization design process into two stages: global optimization and local optimization; and develop global and local optimization methods, respectively. In the first stage, the non-dominated sorting genetic algorithm (NSGA-II) is adopted to obtain the framework of the train head with an optimized global shape. In the second stage, Latin hypercube sampling (LHS) is applied in the local shape optimization of the PDE surface patches determined by the optimized framework to improve local details. The effectiveness of our proposed method is demonstrated by better aerodynamic performance achieved from the optimization solutions in global and local optimization stages in comparison with the original high-speed train head.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Surrogate-based aerodynamic shape optimization of high-speed train heads: A review of four key technologies;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit;2024-05-06

2. Manifold-guided multi-objective gradient algorithm combined with adjoint method for supersonic aircraft shape design;Aerospace Science and Technology;2024-04

3. A review of Hyperloop aerodynamics;Computers & Fluids;2024-04

4. Study of aerodynamic characteristics of a high-speed train with wings moving through a tunnel;Journal of Central South University;2024-03

5. Effects of different aerodynamic configurations on crosswind stability of a conventional train;Journal of Wind Engineering and Industrial Aerodynamics;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3