On the co-rotational method for geometrically nonlinear topology optimization

Author:

Dunning Peter D.

Abstract

AbstractThis paper investigates the application of the co-rotational method to solve geometrically nonlinear topology optimization problems. The main benefit of this approach is that the tangent stiffness matrix is naturally positive definite, which avoids some numerical issues encountered when using other approaches. Three different methods for constructing the tangent stiffness matrix are investigated: a simplified method, where the linear elastic stiffness matrix is simply rotated; the consistent method, where the tangent stiffness is derived by differentiating residual forces by displacements; and a symmetrized method, where the consistent tangent stiffness is approximated by a symmetric matrix. The co-rotational method is implemented for 2D plane quadrilateral elements and 3-node shell elements. Matlab code is given in the appendix to modify an existing, freely available, density-based topology optimization code so it can solve 2D problems with geometric nonlinear analysis using the co-rotational method. The approach is used to solve four benchmark problems from the literature, including optimizing for stiffness, compliant mechanism design, and a plate problem. The solutions are comparable with those obtained with other methods, demonstrating the potential of the co-rotational method as an alternative approach for geometrically nonlinear topology optimization. However, there are differences between the methods in terms of implementation effort, computational cost, final design, and objective value. In summary, schemes involving the symmetrized tangent stiffness did not outperform the other schemes. For problems where the optimal design has relatively small displacements, then the simplified method is suitable. Otherwise, it is recommended to use the consistent method, as it is the most accurate.

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3