Robust contact-constrained topology optimization considering uncertainty at the contact support

Author:

Schmidt TimoORCID,Kriegesmann BenediktORCID,Seifried RobertORCID

Abstract

AbstractIn this paper, the general framework for contact-constrained topology optimization of Strömberg and Klarbring (2010) is extended to robust topology optimization. In doing so, a linear elastic design domain is considered and the augmented Lagrangian approach is used to model the unilateral contact. For topology optimization, the design space is parametrized with the SIMP-approach and the Sigmund’s filter is applied. Additionally, the robust framework considers uncertainties at the contact support such as deviations of the geometry of the contact surface and the friction coefficient. Both uncertainties are described by the first-order second-moment method which leads to minimal additional costs. In fact, only two additional linear equations must be solved to obtain the robust objective and its gradient with respect to the design variables. Having both the objective and the gradient, the design update is computed with the method of moving asymptotes. The robust framework is applied to 2D and 3D examples to prove its scalability for real-world applications.

Funder

Landesforschungsförderung Hamburg

Technische Universität Hamburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3