Abstract
AbstractThe present contribution derives a theoretical framework for constructing novel geometrical constraints in the context of density-based topology optimization. Principally, the predefined geometrical dimensionality is enforced locally on the components of the optimized structures. These constraints are defined using the principal values (singular values) from a singular value decomposition of points clouds represented by elemental centroids and the corresponding relative density design variables. The proposed approach is numerically implemented for demonstrating the designing of lattice or membrane-like structures. Several numerical examples confirm the validity of the derived theoretical framework for geometric dimensionality control.
Funder
Technische Hochschule Ostwestfalen-Lippe
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献