Design of stiffened panels for stress and buckling via topology optimization

Author:

Chu ShengORCID,Featherston Carol,Kim H. Alicia

Abstract

AbstractThis paper investigates the weight minimization of stiffened panels simultaneously optimizing sizing, layout, and topology under stress and buckling constraints. An effective topology optimization parameterization is presented using multiple level-set functions. Plate elements are employed to model the stiffened panels. The stiffeners are parametrized by implicit level-set functions. The internal topologies of the stiffeners are optimized as well as their layout. A free-form mesh deformation approach is improved to adjust the finite element mesh. Sizing optimization is also included. The thicknesses of the skin and stiffeners are optimized. Bending, shear, and membrane stresses are evaluated at the bottom, middle, and top surfaces of the elements. A p-norm function is used to aggregate these stresses in a single constraint. To solve the optimization problem, a semi-analytical sensitivity analysis is performed, and the optimization algorithm is outlined. Numerical investigations demonstrate and validate the proposed method.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3