Finding globally optimal arrangements of multiple point loads in structural design using a single FEA

Author:

Lee Ting-Uei,Xie Yi MinORCID

Abstract

AbstractMany structures around us are designed to carry point loads. Such structures are typically sensitive to load arrangements, including load locations, magnitudes, and directions; a slight change in these ingredients could significantly affect the structural response. Therefore, knowing the extremal load arrangements to achieve the best and worst structural performance holds great potential to maximize structural efficiency and avoid structural failure, respectively. Existing studies have attempted to optimize load conditions using iterative optimization algorithms. However, they cannot always guarantee to find the global optimum and may instead obtain the local optima. In this study, we propose a new method, the single FEA method, that can effectively and efficiently find the extremal load conditions of a given structure. The new method considers all possible arrangements of prescribed loads without needing to create and analyze the corresponding finite element models. This is achieved by utilizing a single finite element analysis (FEA) with multiple load cases, where each load case has a unit load applied at one of the candidate load locations. Using the proposed method, we can quickly obtain the extremal load arrangements of the structure to produce the best and worst stiffness performance. A variety of 2D and 3D examples are presented to demonstrate the effectiveness and wide applicability of the new method.

Funder

Australian Research Council

Royal Melbourne Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3