Abstract
AbstractThis paper proposes a density-based topology optimization method for natural convection problems using the lattice Boltzmann method (LBM). As the LBM can be developed as a completely explicit scheme, its attractive features over the traditional ones, such as the finite element method, are (1) suitability for solving unsteady flow problems and (2) scalability for large-scale parallel computing. We develop an LBM code for solving unsteady natural convection problems and provide its sensitivity analysis based on the so-called adjoint lattice Boltzmann method. Notably, the adjoint equation is derived from the discrete particle velocity Boltzmann equation and can be solved similarly to the original LBM concerning unsteady natural convection problems. We first show that the proposed method can produce similar results to the previous work in a steady-state natural convection problem. We then demonstrate the efficacy of the proposed method through 2D numerical examples concerning unsteady natural convection. As a large-scale problem, we tackle a 3D unsteady natural convection problem on a parallel supercomputer. All the developed codes written in C++ are available at https://github.com/PANFACTORY/PANSLBM2.git.
Funder
Japan Society for the Promotion of Science
Tokyo University of Science
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献