Abstract
AbstractTo solve complex real-world problems, heuristics and concept-based approaches can be used to incorporate information into the problem. In this study, a concept-based approach called variable functioning (Fx) is introduced to reduce the optimization variables and narrow down the search space. In this method, the relationships among one or more subsets of variables are defined with functions using information prior to optimization; thus, the function variables are optimized instead of modifying the variables in the search process. By using the problem structure analysis technique and engineering expert knowledge, the Fx method is used to enhance the steel frame design optimization process as a complex real-world problem. Herein, the proposed approach was coupled with particle swarm optimization and differential evolution algorithms then applied for three case studies. The algorithms are applied to optimize the case studies by considering the relationships among column cross-section areas. The results show that Fx can significantly improve both the convergence rate and the final design of a frame structure, even if it is only used for seeding.
Funder
National Science Foundation
University of Technology Sydney
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献