Reliability-based bottom-up manufacturing cost optimisation for composite aircraft structures

Author:

Morse LlewellynORCID,Cartabia Lorenzo,Mallardo Vincenzo

Abstract

AbstractA novel methodology is presented for the reliability-based manufacturing cost optimisation of composite aircraft structures. A comprehensive bottom-up costing approach is employed, enabling precise manufacturing cost estimation in terms of material, machine, labour, tooling, and indirect costs. This approach splits the manufacturing process into many individual activities, which can be combined in many different ways, allowing the proposed optimisation methodology to be applied to a wide range of composite aircraft structures. A genetic algorithm (GA) is coupled with a deep neural network (DNN) to efficiently determine the optimal composite ply stacking sequence for every part of an assembled structure. A numerical example featuring a composite-stiffened aircraft fuselage panel is investigated. The reliability of the panel is measured in terms of its buckling resistance, and its manufacturing cost is estimated based on the individual costs of over 20 activities. The labour times for each activity were estimated based on data collected from an aerospace company specialising in the manufacture of advanced composite aircraft structures. Results indicate that material, machine, labour, and tool costs can vary significantly depending on the level of structural reliability required, demonstrating the importance of accounting for non-material costs when designing composite aircraft structures.

Funder

Clean Sky 2 Joint Undertaking

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3