Efficient limitation of resonant peaks by topology optimization including modal truncation augmentation

Author:

Delissen ArnoudORCID,van Keulen Fred,Langelaar Matthijs

Abstract

AbstractIn many engineering applications, the dynamic frequency response of systems is of high importance. In this paper, we focus on limiting the extreme values in frequency response functions, which occur at the eigenfrequencies of the system, better known as resonant peaks. Within an optimization, merely sampling the frequency range and limiting the maximum values result in high computational effort. Additionally, the sensitivities of this method are not complete, since only information about the resonance peak amplitude is included. The design dependence with respect to the frequency of the extreme value is missed, thus hampering the convergence. To overcome these difficulties, we propose a constraint which can efficiently and accurately limit resonant peaks in a frequency response function. It has a close relation with eigenfrequency maximization; however, in that case, the amplitudes of the frequency response are unconstrained. In order to keep the computational time low, efficient implementation of this constraint is studied using reduced-order models based on modal truncation and modal truncation augmentation. Furthermore, approximated sensitivities are investigated, resulting in a large computational gain, while still yielding very accurate sensitivities and designs with almost equivalent performance compared with the non-approximated case. Conditions are established for the accuracy and computational efficiency of the proposed methods, depending on the number of peaks to be limited, numbers of inputs and outputs, and whether or not the system input and output are collocated.

Funder

HSTM

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3