Abstract
AbstractSignificant computational resources are required to obtain an optimised wing jig shape by solving a high-fidelity large-scale aero-structural design optimisation problem. Gradient-based methods are efficient; however, some of the features of real-life engineering problems including numerical noise that pollutes the function values and occurrences of failed evaluations in the optimisation may limit their performance. To address these issues, this paper presents the latest developments in the multipoint approximation method (MAM) based on a gradient-assisted metamodel assembly technique within a trust-region optimisation framework. The proposed method is tested by a benchmark case first, and then, an aircraft wing jig shape optimisation problem is offered to demonstrate its performance. The gradient-based optimisation is used as a benchmark case, and the metamodel-based optimisation utilises the latest developments in MAM to solve the same problem. The results show that the proposed method can achieve the same design goal as the gradient-based method but with enhanced robustness and efficient performance. In the wing jig shape optimisation, the difference in the design objective, the global equivalent drag coefficient, between the two aforementioned optimisation approaches is 0.20 counts, whose relative difference is approximately 0.10%. Three approximate sub-optimisations have been conducted in every iteration of the metamodel-based optimisation to reduce the possibility of local optimality, while the overall elapsed time of the metamodel-based optimisation is approximately 1.98 times that of one gradient-based optimisation, which confirms the competitiveness of the proposed method bearing in mind the added safeguards for numerical noise, failed evaluations and possible local optimality.
Funder
National Natural Science Foundation of China
China Scholarship Council
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献