Wing jig shape optimisation with gradient-assisted metamodel building in a trust-region optimisation framework

Author:

Zhang YuORCID,Jia DongshengORCID,Bontoft Elliot KarlORCID,Toropov VassiliORCID

Abstract

AbstractSignificant computational resources are required to obtain an optimised wing jig shape by solving a high-fidelity large-scale aero-structural design optimisation problem. Gradient-based methods are efficient; however, some of the features of real-life engineering problems including numerical noise that pollutes the function values and occurrences of failed evaluations in the optimisation may limit their performance. To address these issues, this paper presents the latest developments in the multipoint approximation method (MAM) based on a gradient-assisted metamodel assembly technique within a trust-region optimisation framework. The proposed method is tested by a benchmark case first, and then, an aircraft wing jig shape optimisation problem is offered to demonstrate its performance. The gradient-based optimisation is used as a benchmark case, and the metamodel-based optimisation utilises the latest developments in MAM to solve the same problem. The results show that the proposed method can achieve the same design goal as the gradient-based method but with enhanced robustness and efficient performance. In the wing jig shape optimisation, the difference in the design objective, the global equivalent drag coefficient, between the two aforementioned optimisation approaches is 0.20 counts, whose relative difference is approximately 0.10%. Three approximate sub-optimisations have been conducted in every iteration of the metamodel-based optimisation to reduce the possibility of local optimality, while the overall elapsed time of the metamodel-based optimisation is approximately 1.98 times that of one gradient-based optimisation, which confirms the competitiveness of the proposed method bearing in mind the added safeguards for numerical noise, failed evaluations and possible local optimality.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vibration optimization of cantilevered bistable composite shells based on machine learning;Engineering Applications of Artificial Intelligence;2023-11

2. A design method for rail profiles based on the distribution of contact points;Structural and Multidisciplinary Optimization;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3