Topology optimization of periodically arranged components using shared design domains

Author:

Rieser JasperORCID,Zimmermann Markus

Abstract

AbstractBuilding structures from identical components organized in a periodic pattern is a common design strategy to reduce design effort, structural complexity and cost. However, any periodic pattern will impose certain design restrictions often leading to lower structural efficiency and heavier weight. Much research is available for periodic structures with connected components. This paper addresses minimal compliance design for periodic arrangements of unconnected components. The design problem discussed here is relevant for many applications where a tightly nested, space-saving arrangement of identical components is required. We formulate an optimal design problem for a component being part of a periodic arrangement. The orientation and position of the component relatively to its neighbours are prescribed. The component design is computed by topology optimization on a design domain possibly shared by several neighbouring components. Additional constraints prevent components from overlapping. Constraint aggregation is employed to reduce the computational cost of many local constraints. The effectiveness of the method is demonstrated by a series of 2D and 3D examples with an ever-smaller distance between the components. Moreover, problem-specific ranges with only little to no increase in compliance are reported.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3