Abstract
AbstractIn powder-based additive manufacturing, the unused powder must be removed after printing. Topology optimization has been applied to designs for additive manufacturing, which may lead to designs with enclosed voids, where the powder will be trapped inside during printing. A topology optimization method incorporating a powder removal passageway is developed to avoid the powder being trapped inside the structure. The passageway is generated by connecting the entrance, all voids, and the exit sequentially. Each void is limited to have only one pair of inlet and outlet to guarantee a single-path flow to facilitate powder removal after the additive manufacturing. The path of the passageway is optimized to minimize its influence on structural stiffness. The proposed optimization method was applied to two practical case studies where the powder removal passageways were generated successfully.
Funder
Australian Research Council
Monash University
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献