Multidisciplinary structural optimization of novel high-aspect ratio composite aircraft wings

Author:

Kilimtzidis SpyridonORCID,Kostopoulos Vassilis

Abstract

AbstractNovel high-aspect ratio airframe designs pave the way for a more sustainable aviation future. Such configurations enhance the aerodynamic efficiency of an aircraft through induced drag reduction mechanisms. Further performance gains, mainly in terms of structural mass, are accomplished via composite materials airframes. Nevertheless, undesired phenomena such as geometric nonlinearities and aeroelastic couplings due to elevated flexibility may often rise, rendering the design and optimization of such airframes extremely intricate and prohibitive in terms of computational cost. Low-fidelity tools, often preferred on the early design stages, accelerate the design process, albeit suffering from reduced accuracy and ability to capture higher-order phenomena. Contrastingly, high-fidelity computational methods incur excessive computational cost and are therefore utilized at the later, detailed design stages. There arises, therefore, the need for a combination of the various fidelities involved in a cost-effective manner, in order to drive the design towards optimal configurations without significant performance losses. In our approach, variable fidelity analyses are initially conducted in order to shed light on their effect on the structural response of a high-aspect ratio composite materials reference wing. An optimization framework combining low and high-fidelity tools in a sequential manner is then proposed, aiming at attaining a minimum mass configuration subject to multidisciplinary design constraints. As demonstrated, reasonable mass reduction was obtained for a future aircraft wing configuration.

Funder

State Scholarships Foundation

University of Patras

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3