A hierarchical kriging approach for multi-fidelity optimization of automotive crashworthiness problems

Author:

Kaps ArneORCID,Czech Catharina,Duddeck Fabian

Abstract

AbstractMulti-fidelity optimization schemes enriching expensive high-fidelity functions with cheap-to-evaluate low-fidelity functions have gained popularity in recent years. In the present work, an optimization scheme based on a hierarchical kriging is proposed for large-scale and highly non-linear crashworthiness problems. After comparison to other multi-fidelity techniques an infill criterion called variable-fidelity expected improvement is applied and evaluated. This is complemented by two innovative techniques, a new approach regarding initial sampling and a novel way to generate the low-fidelity model for crash problems are suggested. For the former, a modified Latin hypercube sampling, pushing samples more towards design space boundaries, increases the quality of sampling selection. For the latter, a projection-based non-intrusive model order reduction technique accelerates and simplifies the low-fidelity model evaluation. The proposed techniques are investigated with two application problems from the field of automotive crashworthiness—a size optimization problem for lateral impact and a shape optimization problem for frontal impact. The use of a multi-fidelity scheme compared to baseline single-fidelity optimization saves computational effort while keeping an acceptable level of accuracy. Both suggested modifications, independently and especially combined, increase computational performance and result quality in the presented examples.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3