Abstract
AbstractStructural topology optimization (STO) is usually treated as a constrained minimization problem, which is iteratively addressed by solving the equilibrium equations for the problem under consideration. To reduce the computational effort, several reduced basis approaches that solve the equilibrium equations in a reduced space have been proposed. In this work, we apply functional principal component analysis (FPCA) to generate the reduced basis, and we couple FPCA with a gradient-based optimization method for the first time in the literature. The proposed algorithm has been tested on a large STO problem with 4.8 million degrees of freedom. Results show that the proposed algorithm achieves significant computational time savings with negligible loss of accuracy. Indeed, the density maps obtained with the proposed algorithm capture the larger features of maps obtained without reduced basis, but in significantly lower computational times, and are associated with similar values of the minimized compliance.
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献