Abstract
AbstractThis paper demonstrates how a strain energy transition approach can be used to remove artificial buckling modes that often occur in stability constrained topology optimization problems. To simulate the structural response, a nonlinear large deformation hyperelastic simulation is performed, wherein the fundamental load path is traversed using Newton’s method and the critical buckling load levels are estimated by an eigenvalue analysis. The goal of the optimization is to minimize displacement, subject to constraints on the lowest critical buckling loads and maximum volume. The topology optimization problem is regularized via the Helmholtz PDE-filter and the method of moving asymptotes is used to update the design. The stability and sensitivity analyses are outlined in detail. The effectiveness of the energy transition scheme is demonstrated in numerical examples.
Funder
Lawrence Livermore National Laboratory
Energimyndigheten
eSSENCE: The e-Science Collaboration
Lund University
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献