Topology optimization with advanced CNN using mapped physics-based data

Author:

Seo JunhyeonORCID,Kapania Rakesh K.

Abstract

AbstractThis research proposes a new framework to develop an accurate machine-learning-based surrogate model to predict the optimum topological structures using an advanced encoder–decoder network, Unet, and Unet++. The trained surrogate model predicts the optimum structural layout as output by inputting the results from the initial static analysis without any iterative optimization calculations. Input and output data are generated using the commercial finite element analysis package, Abaqus/Standard, and an optimization package, Abaqus/Tosca. We applied the data augmentation technique to increase the amount of data without actual calculations. Primarily, this research focused on overcoming the weaknesses of previous studies that the trained network is only applicable to limited geometry variations and requires an organized grid rectangular mesh. Therefore, this study suggests a mapping process to convert the analysis data on any type of mesh element to a tensor form, which enables training and employing the network. Also, to increase the prediction accuracy, we trained the network with the labeled optimum material data using a binary segmented output, representing the structure and void regions in the domain. Finally, the trained networks are evaluated using the intersection over union (IoU) scores representing the classification accuracy. The best-performing network provides highly accurate results, and this model provided the IoU scores for average, maximum, and standard deviation as 90.0%, 99.8%, and 7.1%, respectively. Also, we apply it to solve local-global structural optimization problems, and the overall calculation time is reduced by 98%.

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3