Layout optimization of long-span structures subject to self-weight and multiple load-cases

Author:

Fairclough Helen E.ORCID,Gilbert Matthew

Abstract

AbstractLayout optimization provides a powerful means of identifying materially efficient structures. It has the potential to be particularly valuable when long-span structures are involved, since self-weight represents a significant proportion of the overall loading. However, previously proposed numerical layout optimization methods neglect or make non-conservative approximations in their modelling of self-weight and/or multiple load-cases. Combining these effects presents challenges that are not encountered when they are considered separately. In this paper, three formulations are presented to address this. One formulation makes use of equal stress catenary elements, whilst the other two make use of elements with bending resistance. Strengths and weaknesses of each formulation are discussed. Finally, an approach that combines formulations is proposed to more closely model real-world behaviour and to reduce computational expense. The efficacy of this approach is demonstrated through application to a number of 2D- and 3D-structural design problems.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3